PART I

From Simon and Blume, do the following:

- Chapter 10: 10.4, 10.11, 10.13, 10.17, 10.20–22, 10.34–36, 10.39–40.

PART II

Q1. The vector notes contain the following statement. For $0 < k < n$, a k-dimensional plane in \mathbb{R}^n may be defined as a linear combination of any k linearly independent vectors, $b_i \in \mathbb{R}^n$ ($i = 1$ to k), plus another vector $b_0 \in \mathbb{R}^n$, i.e.:

$$\{ x \in \mathbb{R}^n \mid t_i \in \mathbb{R}, \ x = b_0 + \sum_{i=1}^{k} t_i b_i \}.$$

It is further stated that the plane passes through the origin iff b_0, b_1, \ldots, b_k are linearly dependent. An informal geometric argument is given in the notes. Give a formal algebraic proof, i.e., show both

(i) Plane passes through origin \Rightarrow linear dependence of b_0, b_1, \ldots, b_k,
(ii) Linear dependence of b_0, b_1, \ldots, b_k \Rightarrow plane passes through origin.