1. Quadratic Forms

1a) A **quadratic form** is a function $Q: \mathbb{R}^n \rightarrow \mathbb{R}$ with values given by:

$$Q(x_1, \ldots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$$

or, in matrix notation,

$$Q(x_1, \ldots, x_n) = \mathbf{x}' \mathbf{A} \mathbf{x},$$

where \mathbf{A} is an nth order square matrix, \mathbf{x} is a column vector and \mathbf{x}' (the transpose of \mathbf{x}) is a row vector. In other words, each element a_{ij} of a square matrix is multiplied by $x_i x_j$ and the products are then added.

The quadratic form can be written as the sum of n terms of the form

$$a_{ii}(x_i)^2$$

and $(n^2 - n)/2$ terms of the form

$$a_{ij}x_i x_j + a_{ji}x_j x_i = (a_{ij} + a_{ji})x_i x_j,$$

where $i \neq j$. It will therefore make no difference to the value of the quadratic form if we take the average of a_{ij} and a_{ji} and treat each of a_{ij} and a_{ji} as equal to this average, i.e., if we transform \mathbf{A} into a symmetric matrix by averaging component pairs a_{ij} and a_{ji}. Hereafter \mathbf{A} is assumed to be symmetric.

1b) The quadratic form is said to be

(i) **positive definite** if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$,

(ii) **negative definite** if $\mathbf{x}' \mathbf{A} \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$,

(iii) **positive semi-definite** if $\mathbf{x}' \mathbf{A} \mathbf{x} \geq 0$ for all \mathbf{x}, and

(iv) **negative semi-definite** if $\mathbf{x}' \mathbf{A} \mathbf{x} \leq 0$ for all \mathbf{x}.

(v) **indefinite** if $\mathbf{x}' \mathbf{A} \mathbf{x}$ takes on both positive and negative values for suitably chosen \mathbf{x}.

Note that if a quadratic form is positive definite, we say that the associated \mathbf{A} matrix is positive definite (i.e., positive definiteness of $\mathbf{x}' \mathbf{A} \mathbf{x}$ and positive definiteness of \mathbf{A} mean the same thing), and similarly for other types of definiteness.
Determinant Tests of Definiteness of Quadratic Forms

2a) We can test for the definiteness of a quadratic form using determinants. First we need a definition. A kth order principal submatrix of an nth order matrix A is a submatrix formed by deleting $n - k$ rows from A and the same columns from A (e.g., one might delete rows 1, 2 and 5 and columns 1, 2 and 5). The determinant of a kth order principal submatrix is called a kth order principal minor.

The kth order leading principal minor is the determinant of the kth order principal submatrix formed by deleting the last $n - k$ rows and columns.

A matrix is positive definite iff all its kth order leading principal minors are positive, i.e.,

$$|a_{11}| > 0 \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0 \quad \ldots \quad \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} > 0$$

A matrix is negative definite iff all its kth order leading principal minors alternate in sign, starting from negative (equivalently, if the minors of odd-numbered order are negative and those of even-numbered order are positive):

$$|a_{11}| < 0 \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0 \quad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} < 0 \quad \ldots$$

2b) For semi-definiteness, we replace the strict inequalities in the above statements with weak inequalities and, most importantly, the weak inequalities must hold for all kth order principal minors, not just the leading principal minors.

2c) A very simple necessary condition for the quadratic form to be positive definite is that $a_{ii} > 0$ for all i. For positive semi-definiteness, the condition is that $a_{ii} \geq 0$ for all i. For negative definiteness, it is necessary that $a_{ii} < 0$ for all i. For negative semi-definiteness, it is necessary that $a_{ii} \leq 0$ for all i.

2d) Sometimes in economics (particularly in the context of optimisation problems) we are interested in the sign definiteness of a quadratic form for x values satisfying some equality constraint. Formally, we are interested in the sign definiteness of $x'Ax$ for x satisfying $Bx = 0$, where B is an $m \times n$ matrix and, importantly, $m < n$.

To test this, we may form the following bordered matrix:

$$K = \begin{bmatrix} 0 & B \\ B' & A \end{bmatrix}$$

$x'Ax$ is positive definite for $x \neq 0$ satisfying $Bx = 0$ iff the last $n - m$ leading principal minors of K have the same sign as $(-1)^m$ (where m is the number of rows in B). $x'Ax$ is
negative definite for \(x \neq 0 \) satisfying \(Bx = 0 \) iff the last \(n-m \) leading principal minors of \(K \) alternate in sign, with \(K \) itself (the last leading principal minor) having the same sign as \((-1)^n\) (where \(n \) is the number of rows/columns in \(A \)).

Tests for semi-definiteness are complicated and will not be discussed here. \(x'Ax \) is indefinite for \(x \neq 0 \) satisfying \(Bx = 0 \) if both the test for positive definiteness and the test for negative definiteness are violated by a non-zero leading principal minor. If they are violated by a zero leading principal minor, then further investigation is needed before anything can be said.

Note that a bordered matrix has a total of \(n+m \) leading principal minors. Thus if we compute the last \(n-m \), we are omitting the first \(2m \) leading principal minors, and starting at the \((2m+1)\)th leading principal minor. As before, for positive definiteness, we require that all leading principal minors starting with the \((2m+1)\)th have the sign of \((-1)^m\). For negative definiteness, we require that the \((2m+1)\)th leading principal minor have the sign of \((-1)^{m+1}\) and that all larger leading principal minors alternate in sign.

Exercise. Derive this sign restriction on leading principal minors for the negative definite case from the earlier statement.

3. (Quasi-)Concavity and (Quasi-)Convexity

3a) Consider the function \(f:C \rightarrow \mathbb{R} \), where \(C \) is an open convex subset of \(\mathbb{R}^n \). If \(f \) has continuous second order partial derivatives, we may define a **Hessian** matrix as follows:

\[
H \equiv \begin{bmatrix}
f_{11} & f_{12} & \cdots & f_{1n} \\
f_{21} & f_{22} & \cdots & f_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n1} & f_{n2} & \cdots & f_{nn}
\end{bmatrix}
\]

where

\[f_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}\]

Then \(f \) is concave if and only if the Hessian is negative semi-definite for all \(x \in C \) and \(f \) is convex if and only if the Hessian is positive semi-definite for all \(x \in C \). A sufficient (but not necessary) condition for \(f \) to be strictly concave is that the Hessian be negative definite for all \(x \in C \). A sufficient (but not necessary) condition for \(f \) to be strictly convex is that the Hessian be positive definite for all \(x \in C \).

3b) Let \(f \) be as defined in 3a). If \(f \) has continuous second order partial derivatives, we may define the following bordered matrix:

\[
K = \begin{bmatrix}
0 & f_1 & \cdots & f_n \\
- & - & \cdots & - \\
f_1 & f_{11} & \cdots & f_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
f_n & f_{n1} & \cdots & f_{nn}
\end{bmatrix}
\]
A sufficient (but not necessary) condition for f to be strictly quasi-concave is that K satisfy the conditions for negative definiteness of a bordered matrix for all $x \in C$, i.e., the 3rd order leading principal minor must be positive and all larger leading principal minors must alternate in sign.

A sufficient (but not necessary) condition for f to be strictly quasi-convex is that K satisfy the conditions for positive definiteness of a bordered matrix for all $x \in C$, i.e., the 3rd order and all larger leading principal minors must be negative.

If the strict inequalities are replaced by weak inequalities, then one gets a necessary condition for quasi-concavity/convexity.

3c) Given a convex set C, its closure $\text{cl } C$ consists of the union of C and its boundary points.\(^1\) We have the following result: If f is continuous on $\text{cl } C$ and concave/convex/quasi-concave/quasi-convex on C, then it is likewise concave/convex/quasi-concave/quasi-convex (respectively) on $\text{cl } C$. The value of this result is that it means that results obtained for \mathbb{R}^{n+}_{++} can be extended to \mathbb{R}^n_{++}.

Quadratic Forms Questions

For the current topic, the questions in Simon and Blume are similar to those in my own “question bank” so I have only set Simon and Blume questions, with none of my own.

From Simon and Blume, do the following:

- Chapter 16: 16.1, 16.6.

\(^1\) Or, equivalently, the union of C and its accumulation points or, equivalently, the intersection of all closed sets containing C.