Lecture 6

Convexity
Agenda

There are three main topics:

- Convex sets.
Agenda

There are three main topics:

- Convex sets.
- Convexity and concavity of functions.
Agenda

There are three main topics:

- Convex sets.
- Convexity and concavity of functions.
- Applications to optimization and economics.
Objectives Related to Convex Sets

We will study:

- The definition of a convex set.
Objectives Related to Convex Sets

We will study:

- The definition of a convex set.
- The inner product of two vectors.
Objectives Related to Convex Sets

We will study:

- The definition of a convex set.
- The inner product of two vectors.
- The Cauchy-Schwartz inequality.
Objectives Related to Convex Sets

We will study:

- The definition of a convex set.
- The inner product of two vectors.
- The Cauchy-Schwartz inequality.
- Sufficient conditions for convexity.
Objectives Related to Convex Sets

We will study:

- The definition of a convex set.
- The inner product of two vectors.
- The Cauchy-Schwartz inequality.
- Sufficient conditions for convexity.
- The separating hyperplane theorem.
Definition of a Convex Set

Definition: A set $C \subseteq \mathbb{R}^m$ is convex if

$$(1 - \alpha)x + \alpha y \in C$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1$.

Visually, this means that the line segment between any two of the set's points is contained in the set.

A room is convex if two people in it can always see each other.
Definition of a Convex Set

Definition: A set $C \subset \mathbb{R}^m$ is convex if

$$(1 - \alpha)x + \alpha y \in C$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1$.

- Visually, this means that the line segment between any two of the set’s points is contained in the set.
Definition of a Convex Set

Definition: A set $C \subset \mathbb{R}^m$ is convex if

$$(1 - \alpha)x + \alpha y \in C$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1$.

- Visually, this means that the line segment between any two of the set’s points is contained in the set.
- A room is convex if two people in it can always see each other.
A First Example

- Prove that \(\{ x \in \mathbb{R}^m : x_1 \geq 0 \} \) is convex.
A First Example

• Prove that \(\{ x \in \mathbb{R}^m : x_1 \geq 0 \} \) is convex.

Proof: If \(x, y \in \mathbb{R}^m \) and \(0 \leq \alpha \leq 1 \), then

\[
(1-\alpha)x + \alpha y = ((1-\alpha)x_1 + \alpha y_1, \ldots, (1-\alpha)x_m + \alpha y_m).
\]

If \(x_1 \geq 0 \) and \(y_1 \geq 0 \), then \((1 - \alpha)x_1 + \alpha y_1 \geq 0 \) because sums and products of nonnegative numbers are nonnegative.
The Inner Product

Definition: The inner product of two vectors $x, y \in \mathbb{R}^m$ is

$$\langle x, y \rangle := \sum_{i=1}^{m} x_i y_i.$$
The Inner Product

Definition: The inner product of two vectors $x, y \in \mathbb{R}^m$ is

$$\langle x, y \rangle := \sum_{i=1}^{m} x_i y_i.$$

• For $x, y, z \in \mathbb{R}^m$ and $t \in \mathbb{R}$ prove that:
 • $\langle x, y \rangle = \langle y, x \rangle$;
The Inner Product

Definition: The inner product of two vectors \(x, y \in \mathbb{R}^m \) is

\[
\langle x, y \rangle := \sum_{i=1}^{m} x_i y_i.
\]

- For \(x, y, z \in \mathbb{R}^m \) and \(t \in \mathbb{R} \) prove that:
 - \(\langle x, y \rangle = \langle y, x \rangle \);
 - \(\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \);
The Inner Product

Definition: The inner product of two vectors $x, y \in \mathbb{R}^m$ is

$$\langle x, y \rangle := \sum_{i=1}^{m} x_i y_i.$$

- For $x, y, z \in \mathbb{R}^m$ and $t \in \mathbb{R}$ prove that:
 - $\langle x, y \rangle = \langle y, x \rangle$;
 - $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$;
 - $\langle tx, y \rangle = t \langle x, y \rangle$.
A More General Example

- For $p \in \mathbb{R}^m$ and $c \in \mathbb{R}$ prove that
 \[\{ x \in \mathbb{R}^m : \langle p, x \rangle \geq c \} \]
 is convex.
A More General Example

- For \(p \in \mathbb{R}^m \) and \(c \in \mathbb{R} \) prove that

\[
\{ x \in \mathbb{R}^m : \langle p, x \rangle \geq c \}
\]

is convex.

Proof: Suppose that \(x, y \in \mathbb{R}^m, \langle p, x \rangle \geq c, \langle p, y \rangle \geq c, \) and \(0 \leq \alpha \leq 1. \) Then

\[
\langle p, (1 - \alpha)x + \alpha y \rangle = (1 - \alpha)\langle p, x \rangle + \alpha\langle p, y \rangle \\
\geq (1 - \alpha)c + \alpha c = c.
\]
Length and Orthogonality

Definition: The length of a vector $x \in \mathbb{R}^m$ is

$$\|x\| := \sqrt{\langle x, x \rangle}.$$
Length and Orthogonality

Definition: The length of a vector $x \in \mathbb{R}^m$ is

$$\|x\| := \sqrt{\langle x, x \rangle}.$$

Definition: Two vectors $x, y \in \mathbb{R}^m$ are perpendicular or orthogonal if $\langle x, y \rangle = 0$. We write $x \perp y$ to indicate that this is the case.
The Pythagorean Theorem

- Prove that if \((y - x) \perp (z - x)\), then

\[
\|y - z\|^2 = \|y - x\|^2 + \|z - x\|^2.
\]

(Hint: \(y - z = (y - x) - (z - x)\)).
Proof:

\[
\|y - z\|^2 = \|(y - x) - (z - x)\|^2 \\
= \langle(y - x) - (z - x), (y - x) - (z - x)\rangle \\
= \langle y - x, y - x \rangle + \langle y - x, z - x \rangle \\
\quad + \langle z - x, y - x \rangle + \langle z - x, z - x \rangle \\
= \langle y - x, y - x \rangle + \langle z - x, z - x \rangle \\
= \|y - z\|^2 + \|y - z\|^2.
\]
Cauchy-Schwartz Inequality

- For given $x, y \in \mathbb{R}^m$, find the value of α that minimizes

$$
\|x + \alpha y\|^2 = \langle x + \alpha y, x + \alpha y \rangle
$$

$$
= \langle x, x \rangle + 2\alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle.
$$
Cauchy-Schwartz Inequality

- For given $x, y \in \mathbb{R}^m$, find the value of α that minimizes

$$\|x + \alpha y\|^2 = \langle x + \alpha y, x + \alpha y \rangle$$

$$= \langle x, x \rangle + 2\alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle.$$

$$\alpha^* = -\frac{\langle x, y \rangle}{\langle y, y \rangle}.$$
• Use the fact that $0 \leq \|x + \alpha^*y\|^2$ to derive an inequality relating $\langle x, x \rangle$, $\langle x, y \rangle$, and $\langle y, y \rangle$. This is the Cauchy-Schwartz inequality. It is extremely important and useful.
Use the fact that \(0 \leq \| x + \alpha^* y \|^2 \) to derive an inequality relating \(\langle x, x \rangle \), \(\langle x, y \rangle \), and \(\langle y, y \rangle \).

\[
0 \leq \langle x, x \rangle - 2 \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle x, y \rangle + \frac{\langle x, y \rangle^2}{\langle y, y \rangle^2} \langle y, y \rangle.
\]

\[\Rightarrow \langle x, y \rangle \leq \| x \| \cdot \| y \| .\]
• Use the fact that $0 \leq \|x + \alpha^* y\|^2$ to derive an inequality relating $\langle x, x \rangle$, $\langle x, y \rangle$, and $\langle y, y \rangle$.

$$0 \leq \langle x, x \rangle - 2 \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle x, y \rangle + \frac{\langle x, y \rangle^2}{\langle y, y \rangle^2} \langle y, y \rangle.$$

$$\Rightarrow \langle x, y \rangle \leq \|x\| \cdot \|y\|.$$

• This is the Cauchy-Schwartz inequality. It is extremely important and useful.
• Use the fact that $0 \leq \|x + \alpha^*y\|^2$ to derive an inequality relating $\langle x, x \rangle$, $\langle x, y \rangle$, and $\langle y, y \rangle$.

\[
0 \leq \langle x, x \rangle - 2\frac{\langle x, y \rangle}{\langle y, y \rangle}\langle x, y \rangle + \frac{\langle x, y \rangle^2}{\langle y, y \rangle^2}\langle y, y \rangle.
\]

\[
\Rightarrow \langle x, y \rangle \leq \|x\| \cdot \|y\|.
\]

• This is the **Cauchy-Schwartz inequality**. It is extremely important and useful.

• In fact $\langle x, y \rangle = \|x\| \cdot \|y\| \cos \angle(x, y)$.
The Triangle Inequality

• Prove the triangle inequality: if $x, y \in \mathbb{R}^m$, then
 $$\|x + y\| \leq \|x\| + \|y\|.$$
The Triangle Inequality

- Prove the **triangle inequality**: if \(x, y \in \mathbb{R}^m \), then

\[\| x + y \| \leq \| x \| + \| y \|. \]

Proof:

\[\| x + y \| ^2 = \langle x + y, x + y \rangle \]

\[= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \]

\[= \| x \| ^2 + 2 \langle x, y \rangle + \| y \| ^2 \]

\[\leq \| x \| ^2 + 2 \| x \| \cdot \| y \| + \| y \| ^2 = (\| x \| + \| y \|) ^2. \]
Balls are Convex

- Prove that the unit ball

\[\{ x \in \mathbb{R}^m : \|x\| \leq 1 \} \]

is convex.
Proof: Suppose that \(x, y \in \mathbb{R}^m \) with \(\|x\| \leq 1 \) and \(\|y\| \leq 1 \), and \(0 \leq \alpha \leq 1 \). Then

\[
\langle (1 - \alpha)x + \alpha y, (1 - \alpha)x + \alpha y \rangle
\]

\[
= (1 - \alpha)^2 \langle x, x \rangle + 2\alpha(1 - \alpha) \langle x, y \rangle + \alpha^2 \langle y, y \rangle
\]

\[
= (1 - \alpha)^2 \|x\|^2 + 2\alpha(1 - \alpha) \|x\| \cdot \|y\| + \alpha^2 \|y\|^2
\]

\[
\leq (1 - \alpha)^2 \|x\|^2 + 2\alpha(1 - \alpha) \|x\| \cdot \|y\| + \alpha^2 \|y\|^2
\]

\[
= ((1 - \alpha)\|x\| + \alpha \|y\|)^2 \leq 1.
\]
Sums of Convex Sets

- Prove that if C and C'' are convex, then

$$C + C'' := \{ x + x' : x \in C \text{ and } x' \in C'' \}$$

is convex.
Proof: Suppose that \(\bar{x}, \bar{y} \in C + C' \), and \(0 \leq \alpha \leq 1 \). Then \(\bar{x} = x + x' \) and \(\bar{y} = y + y' \) for some \(x, y \in C \) and \(x', y' \in C' \), and

\[
(1 - \alpha)x + \alpha y \in C \quad \text{and} \quad (1 - \alpha)x' + \alpha y' \in C'
\]

because \(C \) and \(C' \) are convex. Therefore

\[
(1 - \alpha)\bar{x} + \alpha \bar{y} = (1 - \alpha)(x + x') + \alpha(y + y')
\]

\[
= ((1 - \alpha)x + \alpha y) + ((1 - \alpha)x' + \alpha y') \in C + C'.
\]
Intersecting Convex Sets

- Prove that if I is any set and, for each $i \in I$, C_i is convex, then $\bigcap_{i \in I} C_i$ is convex.
Intersecting Convex Sets

- Prove that if \(I \) is any set and, for each \(i \in I \), \(C_i \) is convex, then \(\bigcap_{i \in I} C_i \) is convex.

Proof: If \(x, y \in \bigcap_{i \in I} \) and \(0 \leq \alpha \leq 1 \), then
\[
(1 - \alpha)x + \alpha y \in C_i \text{ for each } i \text{ since } C_i \text{ is convex, so}
\]
\[
(1 - \alpha)x + \alpha y \in \bigcap_{i \in I} C_i.
\]
The Convex Hull of a Set

Definition: The convex hull of a set $S \subset \mathbb{R}^m$ is the smallest convex set that contains S.

Proof: The intersection of all of the convex sets that contain S is a subset of any convex set containing S, and the last result implies that it is convex.
The Convex Hull of a Set

Definition: The convex hull of a set $S \subseteq \mathbb{R}^m$ is the smallest convex set that contains S.

• Prove that this definition makes sense: there is a convex set containing S that is contained in any convex set that contains S.
The Convex Hull of a Set

Definition: The convex hull of a set $S \subset \mathbb{R}^m$ is the smallest convex set that contains S.

• Prove that this definition makes sense: there is a convex set containing S that is contained in any convex set that contains S.

Proof: The intersection of all of the convex sets that contain S is a subset of any convex set containing S, and the last result implies that it is convex.
Interior Points

Definition: A point x is an *interior point* of a set $S \subset \mathbb{R}^m$ if, for some $\varepsilon > 0$, S contains the ε-ball around x:

$$\{ y \in \mathbb{R}^m : \| y - x \| < \varepsilon \} \subset S.$$
Interior Points

Definition: A point x is an interior point of a set $S \subset \mathbb{R}^m$ if, for some $\varepsilon > 0$, S contains the ε-ball around x:

$$\{ y \in \mathbb{R}^m : \|y - x\| < \varepsilon \} \subset S.$$

- A set $U \subset \mathbb{R}^m$ is open if all of its points are interior points.
Interior Points

Definition: A point x is an **interior point** of a set $S \subset \mathbb{R}^m$ if, for some $\varepsilon > 0$, S contains the ε-ball around x:

$$\left\{ y \in \mathbb{R}^m : \|y - x\| < \varepsilon \right\} \subset S.$$

- A set $U \subset \mathbb{R}^m$ is **open** if all of its points are interior points.
- A set $K \subset \mathbb{R}^m$ is **closed** if its complement $\mathbb{R}^m \setminus K$ is open.
The Open Ball is Open

- Prove that the open unit ball
 \[B = \{ x \in \mathbb{R}^m : \| x \| < 1 \} \]
 is, in fact, open.

Proof:
Let \(x \) be an arbitrary point of \(B \). For \(y \in \mathbb{R}^m \) the triangle inequality gives
\[k y k = k x + (y - x) k < k x k + k y - x k. \]

Therefore, for \(y \in \mathbb{R}^m : k y - x k < 1 - k x k \) is contained in \(B \), so \(x \) is an interior point of \(B \).
The Open Ball is Open

- Prove that the open unit ball
 \[B = \{ x \in \mathbb{R}^m : \|x\| < 1 \} \] is, in fact, open.

Proof: Let \(x \) be an arbitrary point of \(B \). For \(y \in \mathbb{R}^m \) the triangle inequality gives

\[\|y\| = \|x + (y - x)\| \leq \|x\| + \|y - x\|. \]

Therefore \(\{ y \in \mathbb{R}^m : \|y - x\| < 1 - \|x\| \} \) is contained in \(B \), so \(x \) is an interior point of \(B \).
Separating Hyperplanes

Separating Hyperplane Theorem: If C and D are convex, C has an interior point, and none of the interior points of C are contained in D, then C and D can be separated by a hyperplane: there is $p \in \mathbb{R}^m$ and a number c such that

$$C \subset \{ x \in \mathbb{R}^m : \langle p, x \rangle \leq c \}$$

and

$$D \subset \{ x \in \mathbb{R}^m : \langle p, x \rangle \geq c \}. $$
Convex Functions: Goals

- The definition of a convex (concave) function.
Convex Functions: Goals

- The definition of a convex (concave) function.
- Characterization of convexity in terms of the set above the function’s graph.
Convex Functions: Goals

- The definition of a convex (concave) function.
- Characterization of convexity in terms of the set above the function’s graph.
- The definition of a quasiconvex (quasiconcave) function.
Convex Functions: Goals

- The definition of a convex (concave) function.
- Characterization of convexity in terms of the set above the function’s graph.
- The definition of a quasiconvex (quasiconcave) function.
- Characterization of quasiconvexity in terms of lower contour sets.
Convex Functions: Goals

- The definition of a convex (concave) function.
- Characterization of convexity in terms of the set above the function’s graph.
- The definition of a quasiconvex (quasiconcave) function.
- Characterization of quasiconvexity in terms of lower contour sets.
- Properties of the expenditure function and the indirect utility function.
Convex Functions Defined

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is convex if

$$f((1 - \alpha)x + \alpha y) \leq (1 - \alpha)f(x) + \alpha f(y)$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1.$
Convex Functions Defined

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is **convex** if

$$f((1 - \alpha)x + \alpha y) \leq (1 - \alpha)f(x) + \alpha f(y)$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1$.

- **Definition:** A function $f : C \rightarrow \mathbb{R}$ is **concave** if $-f$ is convex. Every result concerning convex functions implies a result about concave functions, and vice versa.
Remark: In order for the definition to make sense, the domain C of f must be convex.
Remark: In order for the definition to make sense, the domain C of f must be convex.

Remark: The discussion would be unduly restrictive if we considered only functions with domain \mathbb{R}^m.
Remark: In order for the definition to make sense, the domain C of f must be convex.

Remark: The discussion would be unduly restrictive if we considered only functions with domain \mathbb{R}^m.

- Let $f : [0, \infty) \rightarrow \mathbb{R}$ be the function $f(t) = -\sqrt{t}$. Then f is convex, but there is no convex function $g : \mathbb{R} \rightarrow \mathbb{R}$ with $g(t) = f(t)$ for all $t \geq 0$.
Convexity Characterized

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \rightarrow \mathbb{R}$ be a convex function. Prove that $\mathcal{F} := \{ (x, v) \in C \times \mathbb{R} : f(x) \leq v \}$ is convex.
Convexity Characterized

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \to \mathbb{R}$ be a convex function. Prove that $\mathcal{F} := \{(x, v) \in C \times \mathbb{R} : f(x) \leq v\}$ is convex.

Proof: Suppose that $(x, v), (y, w) \in \mathcal{F}$ and $0 \leq \alpha \leq 1$. Then $(1 - \alpha)(x, v) + \alpha(y, w) \in \mathcal{F}$ because

$$
(1 - \alpha)v + \alpha w \geq (1 - \alpha)f(x) + \alpha f(y)
\geq f((1 - \alpha)x + \alpha y).
$$
The Converse

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \rightarrow \mathbb{R}$ be a function. Suppose that
\[
\mathcal{F} := \{ (x, v) \in C \times \mathbb{R} : f(x) \leq v \}
\]
is convex. Prove that f is convex.
The Converse

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \to \mathbb{R}$ be a function. Suppose that $\mathcal{F} := \{(x, v) \in C \times \mathbb{R} : f(x) \leq v\}$ is convex. Prove that f is convex.

Proof: If $x, y \in C$ and $0 \leq \alpha \leq 1$, then

$$
(1 - \alpha)(x, f(x)) + \alpha(y, f(y)) \in \mathcal{F},
$$

because \mathcal{F} is convex, so

$$(1 - \alpha)f(x) + \alpha f(y) \geq f((1 - \alpha)x + \alpha y).$$
The Expenditure Function

- Prove the concavity of the expenditure function

\[E(p, u) := \min_{U(x) \geq u} p \cdot x. \]
Proof: Suppose that p, q are price vectors and $0 \leq \alpha \leq 1$. Choose x solving

$$\min_{U(x) \geq u} ((1 - \alpha)p + \alpha q) \cdot x.$$

Then $U(x) \geq u$, so

$$(1 - \alpha)E(p, u) + \alpha E(q, u) \leq (1 - \alpha)p \cdot x + \alpha q \cdot x$$

$$= E((1 - \alpha)p + \alpha q, u).$$
Quasiconvex Functions

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is **quasiconvex** if

$$f((1 - \alpha)x + \alpha y) \leq \max\{f(x), f(y)\}$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1$.
Quasiconvex Functions

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \to \mathbb{R}$ is **quasiconvex** if

$$f((1 - \alpha)x + \alpha y) \leq \max\{f(x), f(y)\}$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1$.

- Since $(1 - \alpha)f(x) + \alpha f(y) \leq \max\{f(x), f(y)\}$, a convex function is necessarily quasiconvex.
Quasiconvex Functions

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is quasiconvex if

$$f((1 - \alpha)x + \alpha y) \leq \max\{f(x), f(y)\}$$

whenever $x, y \in C$ and $0 \leq \alpha \leq 1$.

- Since $(1 - \alpha)f(x) + \alpha f(y) \leq \max\{f(x), f(y)\}$, a convex function is necessarily quasiconvex.

- Definition: A function $f : C \rightarrow \mathbb{R}$ is quasiconcave if $-f$ is quasiconvex.
Characterization

- Let $C \subset \mathbb{R}^m$ be quasiconvex, and let $f : C \to \mathbb{R}$ be a convex function. Prove that for any $v \in \mathbb{R}$, the lower contour set $A(v) := \{ x \in C \times \mathbb{R} : f(x) \leq v \}$ is convex.
Characterization

- Let $C \subset \mathbb{R}^m$ be quasiconvex, and let $f : C \to \mathbb{R}$ be a convex function. Prove that for any $v \in \mathbb{R}$, the lower contour set $A(v) := \{ x \in C \times \mathbb{R} : f(x) \leq v \}$ is convex.

Proof: Suppose that $x, y \in A(v)$ and $0 \leq \alpha \leq 1$. Then $(1 - \alpha)x + \alpha y \in A(v)$ because

$$f((1 - \alpha)x + \alpha y) \leq \max\{f(x), f(y)\} \leq v.$$
The Converse

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \to \mathbb{R}$ be a function. Suppose that for all $v \in \mathbb{R}$, $A(v)$ is convex. Prove that f is quasiconvex.
The Converse

Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \to \mathbb{R}$ be a function. Suppose that for all $v \in \mathbb{R}$, $A(v)$ is convex. Prove that f is quasiconvex.

Proof: If $x, y \in C$ and $0 \leq \alpha \leq 1$, then

$$(1 - \alpha)x + \alpha y \in A(\max\{f(x), f(y)\})$$

since this set contains both x and y, but this is precisely what we need to show.
The Indirect Utility Function

- Prove the quasiconvexity of the indirect utility function

\[V(p, I) := \max_{p \cdot x \leq I} U(x). \]
The Indirect Utility Function

- Prove the quasiconvexity of the indirect utility function

\[V(p, I) := \max_{p \cdot x \leq I} U(x). \]

Proof: Given \((p_0, I_0), (p_1, I_1),\) and \(0 \leq \alpha \leq 1,\) let

\[(p_\alpha, I_\alpha) := (1 - \alpha)(p_0, I_0) + \alpha(p_1, I_1). \]

Choose \(x\) solving \(\max_{p_\alpha \cdot x \leq I_\alpha} U(x).\)
Then

\[(1 - \alpha)p_0 \cdot x + \alpha p_1 \cdot x = p_\alpha \cdot x \leq I_\alpha = (1 - \alpha)I_0 + \alpha I_1,\]

so either \(p_0 \cdot x \leq I_0\) or \(p_1 \cdot x \leq I_1\). In the first case

\[V(p_\alpha, I_\alpha) \leq V(p_0, I_0)\]

and in the second case

\[V(p_\alpha, I_\alpha) \leq V(p_1, I_1),\]

so

\[V(p_\alpha, I_\alpha) \leq \max\{V(p_0, I_0), V(p_1, I_1)\}.\]
The Set of Minimizers

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \to \mathbb{R}$ be quasiconvex. Suppose m is the minimum value attained by f. Prove that $\text{argmin } f := f^{-1}(m)$ is convex.
The Set of Minimizers

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \to \mathbb{R}$ be quasiconvex. Suppose m is the minimum value attained by f. Prove that $\text{argmin } f := f^{-1}(m)$ is convex.

Proof: If $x, y \in \text{argmin } f$ and $0 \leq \alpha \leq 1$, then

$$m = \max\{f(x), f(y)\} \geq f((1 - \alpha)x + \alpha y) \geq m,$$

so $(1 - \alpha)x + \alpha y \in \text{argmin } f$.
Strictly Convex Functions

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is strictly convex if

$$f((1 - \alpha)x + \alpha y) < (1 - \alpha)f(x) + \alpha f(y)$$

whenever $x, y \in C$, $x \neq y$, and $0 < \alpha < 1$.

There is a necessary and sufficient condition for this in terms of F (as defined above) that may figure in homework or exams.
Strictly Convex Functions

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is **strictly convex** if

$$f((1 - \alpha)x + \alpha y) < (1 - \alpha)f(x) + \alpha f(y)$$

whenever $x, y \in C$, $x \neq y$, and $0 < \alpha < 1$.

- There is a necessary and sufficient condition for this in terms of \mathcal{F} (as defined above) that may figure in homework or exams.
Strict Quasiconvexity

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is **strictly quasiconvex** if

$$f((1 - \alpha)x + \alpha y) < \max\{f(x), f(y)\}$$

whenever $x, y \in C$, $x \neq y$, and $0 < \alpha < 1$.
Strict Quasiconvexity

Definition: Let $C \subseteq \mathbb{R}^m$ be convex. A function $f : C \rightarrow \mathbb{R}$ is strictly quasiconvex if

$$f((1 - \alpha)x + \alpha y) < \max\{f(x), f(y)\}$$

whenever $x, y \in C$, $x \neq y$, and $0 < \alpha < 1$.

- **Definition:** A function $f : C \rightarrow \mathbb{R}$ is strictly quasiconcave if $-f$ is strictly quasiconvex.
The Set of Minimizers

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \rightarrow \mathbb{R}$ be strictly quasiconvex. Suppose m is the minimum value attained by f. Prove that $\text{argmin } f := f^{-1}(m)$ is a singleton.
The Set of Minimizers

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \to \mathbb{R}$ be strictly quasiconvex. Suppose m is the minimum value attained by f. Prove that $\text{argmin } f := f^{-1}(m)$ is a singleton.

Proof: We argue by *reductio ad absurdum*.
The Set of Minimizers

- Let $C \subset \mathbb{R}^m$ be convex, and let $f : C \rightarrow \mathbb{R}$ be strictly quasiconvex. Suppose m is the minimum value attained by f. Prove that $\text{argmin } f := f^{-1}(m)$ is a singleton.

Proof: We argue by *reductio ad absurdum*. Suppose the claim is false: there are $x, y \in \text{argmin } f$ with $x \neq y$. This implies an impossible inequality:

$$m = \max\{f(x), f(y)\} > f\left(\frac{1}{2}x + \frac{1}{2}y\right) \geq m.$$
Objectives Related to Optimization

We will study:

- Characterization of maximization of a quasiconcave function when the constraint set is convex.
Objectives Related to Optimization

We will study:

- Characterization of maximization of a quasiconcave function when the constraint set is convex.
- The Second Welfare Theorem of Economics.
Definitions

Definition: Let $C \subset \mathbb{R}^m$ be convex. A function $f : C \to \mathbb{R}$ is **semistrictly quasiconcave** if it is quasiconcave and

$$f((1 - \alpha)x + \alpha y) > \max\{f(x), f(y)\}$$

whenever $x, y \in C$, $x \neq y$, $0 < \alpha < 1$, and

$$\min\{f(x), f(y)\} < \max\{f(x), f(y)\}.$$
For $\bar{x} \in C$ let:

$$A_F(\bar{x}) := \{ x \in C : F(x) \geq F(\bar{x}) \} ;$$
• For \(\bar{x} \in C \) let:

\[
A_F(\bar{x}) := \{ x \in C : F(x) \geq F(\bar{x}) \} ;
\]

\[
A_F^c(\bar{x}) := \{ x \in C : F(x) > F(\bar{x}) \} ;
\]
For $\bar{x} \in C$ let:

$$A_F(\bar{x}) := \{ x \in C : F(x) \geq F(\bar{x}) \};$$

$$A_F^c(\bar{x}) := \{ x \in C : F(x) > F(\bar{x}) \};$$

$$B_F(\bar{x}) := \{ x \in C : F(x) \leq F(\bar{x}) \}.$$
Convex Maximization

Theorem: Suppose that $C \subset \mathbb{R}^m$ is convex, $F : C \to \mathbb{R}$ is continuous and semistrictly quasiconcave, $G : C \to \mathbb{R}$ is quasiconvex, $\bar{x} \in C$, and $\mathcal{A}_F^o(\bar{x})$ is nonempty. Then \bar{x} solves

$$\max \ F(x) \ \text{subject to} \ x \in C, \ G(x) \leq G(\bar{x})$$

if and only if there exist $p \in \mathbb{R}^m \setminus \{0\}$ and $c \in \mathbb{R}$ such that $p \cdot x \geq c$ for all $x \in \mathcal{A}_F(\bar{x})$ and $p \cdot x \leq c$ for all $x \in \mathcal{B}_G(\bar{x})$.
Proof: We begin by noting several facts:

- \(A_F(\bar{x}) \) and \(B_G(\bar{x}) \) are convex because \(F \) is quasiconcave and \(G \) is quasiconvex.
Proof: We begin by noting several facts:

- $A_F(x)$ and $B_G(x)$ are convex because F is quasiconcave and G is quasiconvex.
- $A_F^o(x)$ is the set of interior point of $A_F(x)$:
Proof: We begin by noting several facts:

- $A_F(x)$ and $B_G(x)$ are convex because F is quasiconcave and G is quasiconvex.
- $A_F^o(x)$ is the set of interior point of $A_F(x)$:
 - Since F is continuous, each point of $A_F^o(x)$ is an interior point of $A_F(x)$.
Proof: We begin by noting several facts:

- $A_F(x)$ and $B_G(x)$ are convex because F is quasiconcave and G is quasiconvex.
- $A_F^o(x)$ is the set of interior point of $A_F(x)$:
 - Since F is continuous, each point of $A_F^o(x)$ is an interior point of $A_F(x)$.
 - Claim: $A_F^o(x)$ contains the interior points of $A_F(x)$:
Proof of the Claim: Let \(x \) be an interior point of \(\mathcal{A}_F(\overline{x}) \). Choose \(\hat{x} \in \mathcal{A}_F^\circ(\overline{x}) \). Then (since \(x \) is interior)

\[
x_\varepsilon := \hat{x} + (1 + \varepsilon)(x - \hat{x}) \in \mathcal{A}_F(\overline{x})
\]

for some small \(\varepsilon > 0 \). If \(F(x_\varepsilon) > F(\overline{x}) \), then
\[
F(x) \geq \min\{F(\hat{x}), F(x_\varepsilon)\} > F(\overline{x})
\]
because \(F \) is quasiconcave, and if \(F(x_\varepsilon) = F(\overline{x}) \), then
\[
F(x) > \min\{F(\hat{x}), F(x_\varepsilon)\} = F(\overline{x})
\]
because \(F \) is semistrictly quasiconcave.
If

Suppose that \bar{x} solves

$$\max F(x) \text{ subject to } x \in C, G(x) \leq G(\bar{x}).$$
If

Suppose that \bar{x} solves

$$\max F(x) \quad \text{subject to} \quad x \in C, G(x) \leq G(\bar{x}).$$

The sets $A_F(\bar{x})$ and $B_G(\bar{x})$ are convex. There is an interior point of $A_F(\bar{x})$ because $A_F^o(\bar{x})$ is nonempty. Any interior point of $A_F(\bar{x})$ is contained in $A_F^o(\bar{x})$, so there are no interior points of $A_F(\bar{x})$ in $B_G(\bar{x})$. Therefore the existence of suitable p and c follows from the separating hyperplane theorem.
Only If

Suppose that there exist $p \in \mathbb{R}^m \setminus \{0\}$ and $c \in \mathbb{R}$ such that $p \cdot x \geq c$ for all $x \in \mathcal{A}_F(\bar{x})$ and $p \cdot x \leq c$ for all $x \in \mathcal{B}_G(\bar{x})$.
Only If

Suppose that there exist $p \in \mathbb{R}^m \setminus \{0\}$ and $c \in \mathbb{R}$ such that $p \cdot x \geq c$ for all $x \in A_F(x)$ and $p \cdot x \leq c$ for all $x \in B_G(x)$.

If $x \in A_F^o(x)$, then x is an interior point of $A_F(x)$, so $p \cdot x > c$, which implies that $x \notin B_G(x)$. Thus $A_F^o(x) \cap B_G(x) = \emptyset$, which is the same thing as saying that x solves

$$\max F(x) \text{ subject to } x \in C, G(x) \leq G(x).$$
An Exchange Economy

- Society is endowed with quantities X_1, \ldots, X_G of G goods which must be allocated to C consumers.
An Exchange Economy

- Society is endowed with quantities X_1, \ldots, X_G of G goods which must be allocated to C consumers.

- Denoting the quantity of good g allocated to consumer c by x^c_g, the feasible allocations are those vectors $x = (x^1, \ldots, x^C) \in (\mathbb{R}^G)^C$ satisfying $x^c_g \geq 0$ for all c and g and

$$x^1_g + \cdots + x^C_g \leq X_g \quad (g = 1, \ldots, G).$$
Let consumer c's utility be $u^c = U^c(x^c)$.
• Let consumer c’s utility be $u^c = U^c(x^c)$.

• A feasible allocation x is **Pareto optimal** if there does not exist another feasible allocation \tilde{x} with $U^c(\tilde{x}^c) \geq U^c(x^c)$ for all $c = 1, \ldots, C$ and $U^c(\tilde{x}^c) > U^c(x^c)$ for some c.
• Let consumer c’s utility be $u^c = U^c(x^c)$.

• A feasible allocation x is **Pareto optimal** if there does not exist another feasible allocation \tilde{x} with $U^c(\tilde{x}^c) \geq U^c(x^c)$ for all $c = 1, \ldots, C$ and $U^c(\tilde{x}^c) > U^c(x^c)$ for some c.

• An allocation x is **supported** by a price vector p if, for each $c = 1, \ldots, C$, x_c solves $\max_{p \cdot x \leq I^c} U^c(x)$ where $I^c := p \cdot x^c$.
Second Welfare Theorem

The Second Theorem of Welfare Economics:
If each U^c is continuous, increasing, and quasiconcave, then any Pareto optimal allocation x is supported by a price vector.
Proof

For each $c = 1, \ldots, C$ let

$$
\mathcal{B}^c := \{ y \in \mathbb{R}^G : U^c(y) \geq U^c(x^c) \}.
$$

Since U^c is quasiconcave, \mathcal{B}^c is convex. Let

$$
\mathcal{B} := \mathcal{B}^1 + \cdots + \mathcal{B}^C.
$$

Since sums of convex sets are convex, \mathcal{B} is convex. Since each U^c is increasing, \mathcal{B} has an interior point.
Let

\[A := \{ x \in \mathbb{R}^G : 0 \leq x_g \leq X_g \text{ for all } g = 1, \ldots, G \}. \]

Clearly \(A \) is convex. Since \(x \) is Pareto optimal, \(A \) contains no interior points of \(B \). Therefore, by the separating hyperplane theorem, there exists \(p \in \mathbb{R}^G \setminus \{0\} \) and \(I \in \mathbb{R} \) such that \(p \cdot x \leq I \) for all \(x \in A \) and \(p \cdot x \geq I \) for all \(x \in B \). Note that \(p \cdot \left(\sum_{c=1}^{C} x^c \right) = I \) because \(\sum_{c=1}^{C} x^c \in A \cap B \).
To produce a contradiction, suppose that, for some c', $x^{c'}$ is not a solution to $\max_{p \cdot x \leq I^{c'}} U^{c'}(x)$ where $I^{c'} := p \cdot x^{c'}$. That is, there is some $\tilde{x}^{c'}$ with $p \cdot \tilde{x}^{c'} \leq I^{c'}$ and $U^{c'}(\tilde{x}^{c'}) > U^{c'}(x^{c'})$. Since $U^{c'}$ is continuous, we may perturb $\tilde{x}^{c'}$ slightly without changing this inequality, so we may assume that $p \cdot \tilde{x}^{c'} < I^{c'}$.
Then \(\tilde{x}^{c'} + \sum_{c \neq c'} x^c \in \mathcal{B} \) and

\[
p \cdot \left(\tilde{x}^{c'} + \sum_{c \neq c'} x^c \right) = p \cdot \tilde{x}^{c'} + \sum_{c \neq c'} p \cdot x^c
\]

\[
< p \cdot x^{c'} + \sum_{c \neq c'} p \cdot x^c = \sum_{c=1}^{C} p \cdot x^c = I.
\]

This contradiction completes the proof.