Economics 4113
Intro to Math Econ

Lecture 1

Two Good Consumer Maximization
Objectives

For two good consumer optimization we study:
Objectives

For two good consumer optimization we study:

- Practical solution methods.
Objectives

For two good consumer optimization we study:

- Practical solution methods.
- Preliminary understanding of marginal analysis.
Objectives

For two good consumer optimization we study:

- Practical solution methods.
- Preliminary understanding of marginal analysis.
- Preliminary acquaintance with the relation between concavity and optimization.
Objectives

For two good consumer optimization we study:

- Practical solution methods.
- Preliminary understanding of marginal analysis.
- Preliminary acquaintance with the relation between concavity and optimization.
- Examples illustrating local vs. global analysis.
The Prototypical Example

The simplest and most standard example is

$$\max U(x_1, x_2) := x_1 x_2$$

subject to $$x_1 + x_2 \leq 2, \ x_1, x_2 \geq 0.$$
Tasks and questions:
Tasks and questions:

- Graph the *budget set*.
Tasks and questions:

- Graph the *budget set*.
- Is it legitimate to assume that $x_1 + x_2 = 2$?
Tasks and questions:

- Graph the budget set.
- Is it legitimate to assume that $x_1 + x_2 = 2$?
- A function $f : \mathbb{R}^2_\geq \to \mathbb{R}$ is **monotonic increasing** if $f(y_1, y_2) \geq f(x_1, x_2)$ whenever $y_1 \geq x_1$ and $y_2 \geq x_2$.
Tasks and questions:

• Graph the budget set.
• Is it legitimate to assume that $x_1 + x_2 = 2$?
 • A function $f : \mathbb{R}^2_\geq \rightarrow \mathbb{R}$ is monotonic increasing if $f(y_1, y_2) \geq f(x_1, x_2)$ whenever $y_1 \geq x_1$ and $y_2 \geq x_2$.
• Substitute to reduce to a one variable problem.
Tasks and questions:

- Graph the budget set.
- Is it legitimate to assume that $x_1 + x_2 = 2$?
 - A function $f : \mathbb{R}^2_\geq \to \mathbb{R}$ is monotonic increasing if $f(y_1, y_2) \geq f(x_1, x_2)$ whenever $y_1 \geq x_1$ and $y_2 \geq x_2$.
- Substitute to reduce to a one variable problem.
- Solve.
A Parameterized Example

Let p_1, p_2, and I be positive numbers. We now consider a problem for which these are parameters:

$$\max U(x_1, x_2) := \ln x_1 + 2 \ln x_2$$

subject to $p_1 x_1 + p_2 x_2 \leq I$, $x_1, x_2 \geq 0$.
As before, we:
As before, we:

- Graph the budget set.
As before, we:

- Graph the budget set.
- Ask whether it is legitimate to assume that all income is spent.
As before, we:

- Graph the budget set.
- Ask whether it is legitimate to assume that all income is spent.
- Substitute to reduce to a one variable problem.
As before, we:

• Graph the budget set.
• Ask whether it is legitimate to assume that all income is spent.
• Substitute to reduce to a one variable problem.
• Solve.
The Arbitrage Argument

Dixit uses the term “arbitrage” to describe a way of thinking about these problems.
The Arbitrage Argument

Dixit uses the term “arbitrage” to describe a way of thinking about these problems.

• To be precise, an *arbitrage* is a portfolio of financial assets that has zero cost (because it combines long and short positions) and a positive payoff with probability one.
The Arbitrage Argument

Dixit uses the term “arbitrage” to describe a way of thinking about these problems.

- To be precise, an arbitrage is a portfolio of financial assets that has zero cost (because it combines long and short positions) and a positive payoff with probability one.
- For example, simultaneously buying and selling the same stock at different prices on different stock exchanges.
An arbitrage is something you would like to add to your overall portfolio.
• An arbitrage is something you would like to add to your overall portfolio.

• This is the intuition Dixit appeals to: at an optimum there should not be a net trade you can add to the bundle (because it has nonpositive cost) that would make you better off.
• An arbitrage is something you would like to add to your overall portfolio.

• This is the intuition Dixit appeals to: at an optimum there should not be a net trade you can add to the bundle (because it has nonpositive cost) that would make you better off.

• We will look at the original problem from the point of view of deviations from the optimum.
We will use the first example, with general prices:

$$\max U(x_1, x_2) := x_1 x_2$$

subject to $$p_1 x_1 + p_2 x_2 \leq 2, \ x_1, x_2 \geq 0.$$
We will use the first example, with general prices:

\[
\max U(x_1, x_2) := x_1 x_2
\]

subject to \(p_1 x_1 + p_2 x_2 \leq 2, \ x_1, x_2 \geq 0. \)

• The optimal bundle is \((1/p_1, 1/p_2)\), but we will not solve the problem as we did above.
We will use the first example, with general prices:

\[
\max U(x_1, x_2) := x_1 x_2
\]

subject to \(p_1 x_1 + p_2 x_2 \leq 2, \ x_1, x_2 \geq 0. \)

- The optimal bundle is \((1/p_1, 1/p_2)\), but we will not solve the problem as we did above.
- Instead, we will use “arbitrage” style analysis to demonstrate that this point solves the problem.
• Express the utility as a function of Δx_1 and Δx_2, where

$$\Delta x_1 := x_1 - 1/p_1 \quad \text{and} \quad \Delta x_2 := x_2 - 1/p_2.$$
• Express the utility as a function of Δx_1 and Δx_2, where

$$\Delta x_1 := x_1 - 1/p_1 \quad \text{and} \quad \Delta x_2 := x_2 - 1/p_2.$$

• In checking whether $(1/p_1, 1/p_2)$ is an optimum, does it make sense to look only at pairs $(\Delta x_1, \Delta x_2)$ with $p_2 \Delta x_2 = -p_1 \Delta x_1$?
• Express the utility as a function of Δx_1 and Δx_2, where

$$
\Delta x_1 := x_1 - 1/p_1 \quad \text{and} \quad \Delta x_2 := x_2 - 1/p_2.
$$

• In checking whether $(1/p_1, 1/p_2)$ is an optimum, does it make sense to look only at pairs $(\Delta x_1, \Delta x_2)$ with $p_2 \Delta x_2 = -p_1 \Delta x_1$?

• What happens when we set $\Delta x_2 = -p_1 \Delta x_1 / p_2$ in the utility function?
Marginal Analysis

Approximately (when Δx_1 and Δx_2 are small) the change in utility resulting from switching from $(1, 1)$ to $(1 + \Delta x_1, 1 + \Delta x_2)$ is

$$MU_1(x_1, x_2) \cdot \Delta x_1 + MU_2(x_1, x_2) \cdot \Delta x_2.$$

• Here

$$MU_i(x_1, x_2) := \frac{\partial U}{\partial x_i}(x_1, x_2)$$

is the marginal utility of additional consumption of good i.
Partial Derivatives

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function. What is the partial derivative of f with respect to x_i at x?
Partial Derivatives

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. What is the partial derivative of f with respect to x_i at x?

• Recall that the partial derivative of f with respect to x_i at x is

$$\frac{\partial f}{\partial x_i}(x) := \lim_{h \to 0} \frac{f(x_1, \ldots, x_i + h, \ldots, x_n) - f(x)}{h}.$$
Cautions

- Warning: The partial derivatives at x may not be defined.
Cautions

- Warning: The partial derivatives at x may not be defined.
- Warning: Even if all n partial derivatives of f exist at every $x \in \mathbb{R}^n$, it can still happen that f is not “well behaved.”
Cautions

- **Warning:** The partial derivatives at x may not be defined.

- **Warning:** Even if all n partial derivatives of f exist at every $x \in \mathbb{R}^n$, it can still happen that f is not “well behaved.”

- **Warning:** Partial derivatives will be very important in this course. This would be a good time to refresh your understanding.
What relation must hold between $MU_1(x_1, x_2)$, $MU_2(x_1, x_2)$, p_1, and p_2 if

$$MU_1(x_1, x_2) \cdot \Delta x_1 + MU_2(x_1, x_2) \cdot \Delta x_2 \leq 0$$

for all $(\Delta x_1, \Delta x_2)$ satisfying $p_1 \Delta x_1 + p_2 \Delta x_2 \leq 0$?
What relation must hold between $MU_1(x_1, x_2)$, $MU_2(x_1, x_2)$, p_1, and p_2 if

$$MU_1(x_1, x_2) \cdot \Delta x_1 + MU_2(x_1, x_2) \cdot \Delta x_2 \leq 0$$

for all $(\Delta x_1, \Delta x_2)$ satisfying $p_1\Delta x_1 + p_2\Delta x_2 \leq 0$?

Prices must be proportional to marginal utilities:

$$\frac{MU_1(x_1, x_2)}{MU_2(x_1, x_2)} = \frac{p_1}{p_2}.$$
Another Example

The next example is simple, but a bit tricky:

\[
\max U(x_1, x_2) := x_1^2 + x_2^2
\]

subject to \(x_1 + x_2 \leq 2, \ x_1, x_2 \geq 0\).
Another Example

The next example is simple, but a bit tricky:

\[
\max U(x_1, x_2) := x_1^2 + x_2^2
\]

subject to \(x_1 + x_2 \leq 2, \ x_1, x_2 \geq 0. \)

• Is \(U \) monotonic increasing? Substitute to reduce to one variable and solve.
Another Example

The next example is simple, but a bit tricky:

\[
\max U(x_1, x_2) := x_1^2 + x_2^2
\]

subject to \(x_1 + x_2 \leq 2, \quad x_1, x_2 \geq 0 \).

• Is \(U \) monotonic increasing? Substitute to reduce to one variable and solve.

• A *corner solution* is a solution of the problem in which one good is not consumed at all.
Yet Another Example

The next example is not so simple and quite tricky:

\[
\max U(x_1, x_2) := x_1^2 + x_2^2 + 3(x_1 x_2)^{3/2}
\]

subject to \(x_1 + x_2 \leq 1, \ x_1, x_2 \geq 0. \)
Yet Another Example

The next example is not so simple and quite tricky:

\[
\max U(x_1, x_2) := x_1^2 + x_2^2 + 3(x_1x_2)^{3/2}
\]

subject to \(x_1 + x_2 \leq 1, \ x_1, x_2 \geq 0 \).

- Is \(U \) monotonic increasing? Substitute to reduce to one variable and solve.
Local vs. Global

- A point x in the budget set is a local maximum if, for some $\varepsilon > 0$, $U(x) > U(x')$ for all x' in the intersection of the budget set and the ε-ball around x.
Local vs. Global

- A point x in the budget set is a *local maximum* if, for some $\varepsilon > 0$, $U(x) > U(x')$ for all x' in the intersection of the budget set and the ε-ball around x.

- Unless there is some additional information, to solve a problem with multiple local maxima one must find them all and compare the value of the utility function at each.
Concavity

- U is concave if

$$U((1 - \alpha)x + \alpha x') \geq (1 - \alpha)U(x) + \alpha U(x')$$

for all x and x' in the domain of U and all $\alpha \in [0, 1]$.
Concavity

- U is concave if

$$U((1 - \alpha)x + \alpha x') \geq (1 - \alpha)U(x) + \alpha U(x')$$

for all x and x' in the domain of U and all $\alpha \in [0, 1]$.

- If U is concave, can the problem “$\max U(x)$ subject to $p_1x_1 + p_2x_2 \leq I, x_1, x_2 \geq 0$” have multiple local maxima at which U takes on different values?
- \(U \) is strictly concave if

\[
U((1 - \alpha)x + \alpha x') > (1 - \alpha)U(x) + \alpha U(x')
\]

for all distinct \(x \) and \(x' \) in the domain of \(U \) and all \(\alpha \in (0, 1) \).
• *U* is strictly concave if

\[
U((1 - \alpha)x + \alpha x') > (1 - \alpha)U(x) + \alpha U(x')
\]

for all distinct *x* and *x'* in the domain of *U* and all \(\alpha \in (0, 1) \).

• If *U* is strictly concave, can the problem “\(\max U(x) \) subject to \(p_1 x_1 + p_2 x_2 \leq I \), \(x_1, x_2 \geq 0 \)” have multiple local maxima?