Answer Key for Problem Set 0
Econ 4113
Instructor: Andy McLennan
Due: The Beginning of Time

Problem 1: For the maximization problem

\[
\max U(x_1, x_2) := x_1 x_2 \quad \text{subject to} \quad x_1 + x_2 \leq 2, \ x_1, x_2 \geq 0:
\]

(a) Is it legitimate to assume that \(x_1 + x_2 = 2? \)

(b) Substitute to reduce to a one variable problem.

(c) Solve.

Answer:

(a) Yes, since the utility function is monotonic increasing: if \(x'_1 \geq x_1 \) and \(x'_2 \geq x_2 \), then

\[
U(x'_1, x'_2) = (x'_1 - x_1)(x'_2 - x_2) + (x'_1 - x_1)x_2 + x_1(x'_2 - x_2) + U(x_1, x_2) \leq U(x_1, x_2).
\]

(b) Setting \(x_2 = 2 - x_1 \), we obtain the problem

\[
\max x_1(2 - x_1) \quad \text{subject to} \quad 0 \leq x_1 \leq 2.
\]

(c) Setting \(0 = \frac{d[x_1(2-x_1)]}{dx_1} = 2 - 2x_1 \), we find that the unique critical point of the objective function is \(x_1 = 1 \). The only possibilities for a maximum are \(x_1 = 0, x_1 = 1, \) and \(x_1 = 2 \). Substitution shows that \(x_1 = 1 \) gives the largest value, so the solution to the original problem is

\[
(x_1, x_2) = (1, 1).
\]