Economics 3012
Strategic Behavior
Andy McLennan
August 25, 2006

Lecture 5

Topics

• Problem Set 4

• Examples of Mixed Nash Equilibrium

• Finding All Equilibria
Problem Set 4

Exercise 118.2

Problem Description:

- A voter receives:
 - 2 utils if her favorite candidate wins,
 - 1 util in the event of a tie,
 - 0 utils if her favorite candidate loses.
- The cost of voting is c where $0 < c < 1$.
- Candidate A has k supporters.
- Candidate B has $m \geq k$ supporters.

We are looking for a mixed strategy Nash equilibrium in which:

- every supporter of Candidate A votes with probability p;
- k supporters of Candidate B vote with certainty;
- the remaining $m - k$ supporters of Candidate B abstain.
Analysis:

- In general a voter is *pivotal* if her vote affects the outcome, either:
 - between a loss and and a tie or
 - between a tie and a win.

- The two different ways of being pivotal each have value one.

- Let p be the probability that a supporter of Candidate A votes.

- The probability that a supporter of Candidate A is pivotal is just the probability p^{k-1} that the other $k-1$ all are voting.

- A supporter of candidate A is indifferent between voting and abstaining if the probability p^{k-1} of being pivotal is equal to the cost c of voting, so
 \[p = c^{\frac{1}{k-1}}. \]
• For a supporter of Candidate B who is expected to vote the probability of being pivotal is the sum of:
 – the probability \(p^k = c^{\frac{k}{k-1}} \) that all \(k \) supporters of Candidate A vote;
 – the probability \(kp^{k-1}(1 - p) \) that exactly \(k - 1 \) of them vote.

• This is greater than the probability \(p^{k-1} = c \) that a particular group of \(k - 1 \) of supporters of A.
 – Thus all the supporters of Candidate B who are expected to vote strictly prefer to do so.

• A supporter of Candidate B who is not expected to vote is pivotal with probability
 \[
p^k = c^{\frac{k}{k-1}} = c \cdot c^{\frac{1}{k-1}} < c.
 \]
 – Such a person prefers not to vote.

• The expected number of voters \(pk + k = (c^{\frac{1}{k-1}} + 1)k \) increases with \(c \).
Exercise 118.3

Problem Statement:

• General A, with three divisions, and General B, with two divisions, each have to allocate their forces to two passes.

• For General A a pure strategy is given by the number $d_1 \in \{0, 1, 2, 3\}$ of divisions allocated to the first pass.

• A pure strategy for General B is given by the number $d_2 \in \{0, 1, 2\}$ of divisions allocated to the first pass.

• General A wins if and only if $d_1 \geq d_2$ and $3 - d_1 \geq 2 - d_2$.
Analysis:

- For General A:
 - $d_1 = 0$ is weakly dominated by $d_1 = 1$.
 - $d_1 = 3$ is weakly dominated by $d_1 = 2$.

- There cannot be a Nash equilibrium in which General B assigns positive probability to $d_2 = 1$:
 - General A would never choose $d_1 = 0, 3$, so $d_2 = 1$ would lose for sure.
 - But General B can always get a positive expected payoff.

- In any equilibrium General B assigns probability 1/2 to each of $d_2 = 0$ and $d_2 = 2$, because if General B assigned unequal probabilities:
 - General A would assign two divisions to whichever pass General B most frequently assigned two divisions to.
 - The best response to this would be for General B to assign both divisions to the other pass.
• In order for General B to be indifferent between $d_2 = 0$ and $d_2 = 2$, the sum of probabilities assigned to $d_1 = 0$ and $d_1 = 1$ must be equal to the sum of probabilities assigned to $d_1 = 2$ and $d_1 = 3$.

• In order for General B to not prefer $d_2 = 1$ is must be the case that the sum of the probabilities assigned to $d_1 = 0$ and $d_1 = 3$ must not be greater than $1/2$.
Exercise 128.1

Problem Statement:

- Two consumers simultaneously choose which store to go to.
 - Each trades with probability 1/2 if they both go to the same store.
 - Trading at price p results in a utility of $1 - p$.
 - Not trading gives utility 0.

- By symmetry it suffices to consider prices p_1, p_2 with $p_1 \leq p_2$, so we can call the first seller the Discount House and the second seller the Boutique.

- We have the following payoff matrix:

$$
D_1 \begin{pmatrix} \frac{1-p_1}{2}, \frac{1-p_1}{2} \\ (1 - p_2, 1 - p_1) \end{pmatrix} \quad B_1 \begin{pmatrix} (1 - p_1, 1 - p_2) \\ \frac{1-p_2}{2}, \frac{1-p_2}{2} \end{pmatrix}.
$$
Analysis:

• It is certainly better to go to the Discount House if the other buyer goes to the Boutique.
 – Going to the Discount House will be a dominant strategy, and \((D_1, D_2)\) will be the unique Nash equilibrium, if
 \[1 - \frac{p_1}{2} \geq 1 - p_2,\]
 i.e.,
 \[p_1 \leq 2p_2 - 1.\]
• If $\frac{1-p_1}{2} < 1 - p_2$, then the game is a Battle of the Sexes with:
 - two pure equilibria (D_1, B_2) and (B_1, D_2)
 - a mixed equilibrium.

• Let q be the probability that Buyer 2 goes to the Discount House in the mixed equilibrium. Indifference for Buyer 1 implies that

$$q \frac{1-p_1}{2} + (1-q)(1-p_1) = q(1-p_2) + (1-q)\frac{1-p_2}{2}.$$

• Solving this gives

$$q = \frac{1 - 2p_1 + p_2}{2 - p_1 - p_2}.$$

• Since the game is symmetric with respect to interchange of the two buyers, this is also the probability that Buyer 1 goes to the Discount House.
Reporting a Crime

Problem Description:

- Each of \(n \) people witness a crime. For each of them reporting the crime has a cost of \(c \), and each receives a benefit of \(v \) if someone reports the crime:
 - \(S_i = \{R_i, D_i\}, i = 1, \ldots, n; \)
 - for each \(i \), \(u_i(s) \) is:
 * 0 if \(s_j = D_j \) for all \(j \);
 * \(v \) if \(s_j = R_j \) for some \(j \neq i \) and \(s_i = D_i \);
 * \(v - c \) if \(s_i = R_i \).
Analysis:

- For each player, there is a pure Nash equilibrium in which that person reports the crime and no one else does.

- There is an equilibrium in which each reports with probability

 \[p_n = 1 - (c/v)^{n-1} \]

 because then, for each the expected utilities of the two actions are the same:

 \[v - c = (1 - (1 - p_n)^{n-1})v. \]

- Since \((1 - p_n)^n = (c/v)^{n-1}\) is an increasing fraction of \(n\), the probability that no one calls in this particular equilibrium increases with \(n\).
• If one player, say i, reports more frequently than another, say j, then the probability that someone reports if i does not is lower than the probability that someone reports if j does not.
 – In a mixed Nash equilibrium in which two players i and j are mixing, they must mix with the same probability.
 – For any $k = 1, \ldots, n$ and any group of k agents, there is a mixed Nash equilibrium in which each member of the group reports with probability p_k and those outside the group never report.

• Remarks on the Kitty Genovese case:
 – $(c/v)^{n-1} < c/v$ for all n.
 – What determines the size k of the equilibrium group of mixers?
The Condorcet Jury Theorem

Problem Description:

- The Accused is either guilty \((G)\) or innocent \((I)\).

- Each juror \(i = 1, \ldots, n\) observes a signal \(\sigma_i \in \{i, g\}\).

 \[
 \text{Prob}(\sigma_i = g|G) = \text{Prob}(\sigma_i = i|I) = p > \frac{1}{2}.
 \]

 - Conditional on the actual state \((G\) or \(I)\) the signals are statistically independent.

- Each juror chooses a vote \(s_i \in \{G_i, I_i\}\).

- The Accused is convicted if \(s_i = G_i\) for all \(i\) and acquitted otherwise.

- For each juror the payoff is:

 - 0 if the correct verdict is reached;

 - \(-1\) if a criminal is acquitted;

 - \(-L\) if an innocent is convicted.
Analysis:

• There are many equilibria in which no one is pivotal. Our analysis is not exhaustive.

• *Sincere voting* is the strategy of choosing G_i when $\sigma_i = g$ and I_i when $\sigma_i = i$.

• When n is large, *sincere voting is not a Nash equilibrium*.

 – Juror i’s vote is *pivotal* only when all other jurors are voting for guilt.

 – If everyone else is voting sincerely the net gain for i resulting from switching to always voting for guilt is:
 \[
 \frac{1}{2}p^{n-1}(1-p) \times 1 + \frac{1}{2}(1-p)^n \times (-L).
 \]
 * $p^{n-1} > (1-p)^{n-1}L$ when n is large.

• It turns out that the probability of convicting an innocent in the symmetric Nash equilibrium in which each juror i votes for guilt when $\sigma_i = g$ and mixes when $\sigma_i = i$ is bounded away from 0 as $n \to \infty$.
A Characterization of Equilibrium

- The support of $\alpha_i \in \Delta(S_i)$ is the set of s_i such that $\alpha_i(s_i) > 0$.

- The support of a mixed strategy profile α is the n-tuple (T_1, \ldots, T_n) where, for each i, T_i is the support of α_i.

- Application of the distributive law to the formula defining expected payoffs gives the formula

$$u_i(\alpha) = \sum_{s_i \in S_i} \alpha_i(s_i)u_i(s_1, \alpha_{-i}).$$

Proposition: A mixed strategy profile α^* is a Nash equilibrium if and only if it is the case for each i that:

- $u_i(s_i, \alpha^*_{-i}) = u_i(t_i, \alpha^*_{-i})$ for all s_i and t_i in the support of α_i^*, and

- $u_i(s_i, \alpha^*_{-i}) \geq u_i(t_i, \alpha^*_{-i})$ for all s_i in the support of α_i^* and all t_i outside the support of α_i^*.
• A strict Nash equilibrium is a Nash equilibrium α^* such that $u_i(s_i, \alpha^*_{-i}) > u_i(t_i, \alpha^*_{-i})$ for all s_i in the support of α^*_i and all t_i outside the support of α^*_i.

• A totally mixed Nash equilibrium is a Nash equilibrium α^* such that for each i the support of α^*_i is all of S_i.

• A totally mixed Nash equilibrium is strict, obviously.

• Any Nash equilibrium α^* is (in the obvious sense) a totally mixed equilibrium of the game obtained by removing all the pure strategies in S_i that are not in the support of α^*_i for each i.
A Recipe for Finding All Nash Equilibria

The following will always work ...

- List all the n-tuples (T_1, \ldots, T_n) where $\emptyset \neq T_i \subset S_i$.

- For each (T_1, \ldots, T_n) find all the totally mixed Nash equilibria of the truncated game obtained by eliminating all elements of each $S_i \setminus T_i$.
 - The totally mixed Nash equilibria are the solutions of a system of equations that are nonlinear when $n \geq 3$.

- For each totally mixed equilibrium of the truncated game, ask if there is an agent i who can get a higher payoff by switching to some pure strategy in $S_i \setminus T_i$.
 - If the answer is “no” you’ve found an equilibrium.
... but it’s *extremely* tedious.

- For each i there are $2^{|S_i|} - 1$ nonempty subsets of S_i. For example
 \[
 \prod_{i=1}^{n} (2^{|S_i|} - 1) = 49
 \]
 when $n = 2$ and $|S_1| = |S_2| = 3$, and this number quickly gets *much* bigger as the game expands.

- When $n > 2$, a single (T_1, \ldots, T_n) can have *lots* of totally mixed Nash equilibria.
 - When 8 players each have 2 pure strategies, there can be up to 14,833 totally mixed equilibria.
 - When 6 players each have 6 pure strategies, there can be up to 4.1×10^{17} totally mixed equilibria.
What to do about this?

- It is *not* unusual for games to have many equilibria.
 - When $n = 2$, each player has k pure strategies, and the payoffs $u_i(s)$ are independent identically distributed normal random variables, the mean number of Nash equilibria is about 1.32^k.
 - When $n = 6$, each player has 6 pure strategies, and the payoffs $u_i(s)$ are independent identically distributed normal random variables, the mean number of Nash equilibria is around 5.6×10^6.

- Inevitably, one must, to some extent, restrict attention to:
 - small games;
 - games with special structures.

- For these there are some speed-ups...
Symmetric Games

• Sometimes a game is “unchanged” if one interchanges some strategies.
 - In “Penalty Kick” there is a symmetry $L_1 \rightarrow R_1, R_1 \rightarrow L_1, L_2 \rightarrow R_2, R_2 \rightarrow L_2$.

• A more comprehensive notion of symmetry involves interchanging the players as well as the pure strategies.
 - For “Which Side to Drive On” there is a symmetry that interchanges the two agents, sending $L_1 \rightarrow R_2, R_1 \rightarrow L_1, L_2 \rightarrow R_1, \text{ and } R_2 \rightarrow L_1$.

\[
\begin{pmatrix}
 L_2 & R_2 \\
 L_1 & (10, 9) & (0, 0) \\
 R_1 & (0, 0) & (9, 10)
\end{pmatrix}
\]

 - For “Reporting a Crime” there is a symmetry for each permutation of the players.
For a definition like the following, it’s best to “know” what it says before you read it.

Symmetry

A symmetry of a game \((S_1, \ldots, S_n; u_1, \ldots, u_n)\) consists of a permutation (one-to-one onto function)

\[
\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}
\]

along with an \(n\) tuple of one-to-one functions

\[
\begin{align*}
r_1 : S_1 &\to S_{\sigma(1)} \\
&
\vdots \\
r_n : S_n &\to S_{\sigma(n)}
\end{align*}
\]

such that

\[
u_{\sigma(i)}(r(s)) = u_i(s)
\]

for all \(i\) and all \(s \in S\), where we define \(r : S \to S\) by setting

\[
r(s) = (r_1(s_1), \ldots, r_n(s_n)).
\]
Once you have one pure equilibrium of a symmetric game, one can apply all available symmetries to generate others.

Theorem: Given a symmetry as above, if \(s \) is a pure Nash equilibrium, then so is \(r(s) \).

Proof. Suppose not. Then there is some \(j \) and \(t_j \in S_j \) such that \(u_j(t_j, r(s)_{-j}) > u_j(r(s)) \). Let \(i = \sigma^{-1}(j) \). Then

\[
\begin{align*}
 u_i(r_i^{-1}(t_j), s_{-i}) &= u_j(r(r_i^{-1}(t_j), s_{-i})) \\
 &= u_j(t_j, r(s)_{-j}) \\
 &> u_j(r(s)) \\
 &= u_i(s),
\end{align*}
\]

contradicting the assumption that \(s \) is a Nash equilibrium.
This also works for mixed strategies:

- Define \(r_i : \Delta(S_i) \rightarrow \Delta(S_{\sigma(i)}) \) by setting
 \[
 r_i(\alpha)(r_i(s_i)) = \alpha_i(s_i).
 \]
 - That is, the probability that \(r_i(\alpha_i) \) assigns to \(r_i(s_i) \) is the same as the probability that \(\alpha_i \) assigns to \(s_i \).

- For a mixed strategy profile \(\alpha \) let
 \[
 r(\alpha) = (r_1(\alpha_1), \ldots, r_n(\alpha_n)).
 \]

- Applying the distributive law to the definition of expected utility gives the following formula:
 \[
 u_{\sigma(i)}(r(\alpha)) = u_i(\alpha)
 \]
 for all \(i \) and all mixed strategy profiles \(\alpha \).

Theorem: Given a symmetry as above, if \(\alpha \) is a mixed Nash equilibrium, then so is \(r(\alpha) \).

Proof. Just the same as above, except now with mixed strategies.
Existence

The most important theorem in game theory is the Nash equilibrium existence theorem:

Theorem: If there are finitely many players and each player has finitely many pure strategies, then there is at least one Nash equilibrium.

Proof Idea: Apply a generalization of the Brouwer fixed point theorem to the correspondence

\[\alpha \mapsto BR_1(\alpha_{-1}) \times \cdots \times BR_n(\alpha_{-n}). \]

- This is the main result in John Nash’s thesis.
 - Relative to the state of knowledge at the time, it is actually rather trivial.
 - Nash went on to prove several extremely deep and important results before developing schizophrenia.
Brouwer’s Fixed Point Theorem: Let D^m be the m-dimensional disk consisting of those points in \mathbb{R}^m whose distance from the origin is less than or equal to one. If $f : D^m \to D^m$ is continuous, then f has a fixed point, i.e., a point $x^* \in D^m$ such that

$$f(x^*) = x^*.$$

- This was first proved around 1910. It is one of the most famous and important theorems in the field of mathematics called topology.

- You will probably not be able to understand very much of it, but even so you might learn a bit about various proofs of the BFT by looking at “From Imitation Games to Kakutani” (joint with Rabee Tourky) on my research page.
Symmetric Equilibrium

- A mixed strategy is *symmetric* if \(r(\alpha) = \alpha \) for every symmetry \((\sigma, r)\).

- A *symmetric Nash equilibrium* is a Nash equilibrium that is a symmetric mixed strategy.

Nash pointed out that (with a little fiddling) his argument actually proves:

Theorem: *There is at least one symmetric Nash equilibrium.*

- Ideas based on symmetry:
 - Starting with one equilibrium, use symmetries to generate others.
 - Divide the problem into two parts:
 * finding symmetric equilibria;
 * finding asymmetric equilibria.
 - If two symmetric players are doing different things, it is “unlikely” that both are happy to mix.
Ideas Related to Dominance

Strict Dominance:

- If there is a strictly dominated strategy, the Nash equilibria are the same as the Nash equilibria of the truncated game resulting from its elimination.

- When solving for all the Nash equilibria, before doing anything else eliminate strictly dominated equilibria repeatedly until there are none left in the truncated game.

- Example:

 \[
 \begin{array}{ccc}
 L & M & R \\
 U & (2, 3) & (1, 2) & (6, 0) \\
 C & (1, 2) & (7, 1) & (5, 0) \\
 D & (0, 0) & (6, 5) & (6, 4) \\
 \end{array}
 \]
Weak Dominance:

- If there is a strictly dominated strategy, then:
 - the Nash equilibria of the truncated game resulting from its elimination are all equilibria of the entire game;
 - in any equilibrium in which the weakly dominated strategy has positive probability, the complementary strategy vectors for which it is strictly worse than some dominating strategy have probability zero.

- Example:

\[
\begin{array}{ccc}
L & M & R \\
U & (2,3) & (1,0) & (0,1) \\
D & (2,2) & (0,1) & (1,0) \\
\end{array}
\]
Example: Rock-Scissors-Paper

- Problem Description:
 - The two players simultaneously each choose Rock, Scissors, or Paper. Rock smashes Scissors, Scissors cuts Paper, and Paper wraps Rock.

\[
\begin{bmatrix}
R_2 & S_2 & P_2 \\
R_1 & (0,0) & (1,-1) & (-1,1) \\
S_1 & (-1,1) & (0,0) & (1,-1) \\
P_1 & (1,-1) & (-1,1) & (0,0)
\end{bmatrix}
\]

- There are lots of symmetries:
 (a) We can rotate the strategies:

\[
R_1 \rightarrow S_1, \quad S_1 \rightarrow P_1, \quad P_1 \rightarrow R_1, \\
R_2 \rightarrow S_2, \quad S_2 \rightarrow P_2, \quad P_2 \rightarrow R_2.
\]

 (b) We can also interchange the players:

\[
R_1 \rightarrow R_2, \quad R_2 \rightarrow R_1, \\
S_1 \rightarrow S_2, \quad S_2 \rightarrow S_1, \\
P_1 \rightarrow P_2, \quad P_2 \rightarrow P_1.
\]
• The only symmetric strategy profile is for both players to assign probability $1/3$ to each pure strategy. Denote this by α^*. Since a symmetric Nash equilibrium exists, without doing any calculations we know that α^* is a Nash equilibrium.

• In the truncated game resulting from the elimination of R_1, P_2 is strictly dominated by S_2.

 – In view of the symmetries, it follows that once we eliminate one pure strategy, iterative eliminations of strictly dominated strategies eliminate all the others.

 – Therefore there is no Nash equilibrium that is not totally mixed.

• We could do a calculation to show that α^* is the only totally mixed Nash equilibrium, but it is also interesting to give a “calculation free” proof by contradiction.
• Suppose that \(\alpha^{**} \) is another (necessarily totally mixed) Nash equilibrium.

 - Without loss of generality (by symmetry!) suppose that \(\alpha_{1}^{**} \neq \alpha_{1}^{*} \).

 - For any real number \(t \) such that

 \[(1 - t)\alpha_{1}^{*} + t\alpha_{1}^{**} \]

 is a mixed strategy (i.e., all probabilities are nonnegative)

 \[((1 - t)\alpha_{1}^{*} + t\alpha_{1}^{**}, \alpha_{2}^{*}) \]

 is a Nash equilibrium:

 * since \(\alpha_{1}^{*} \) and \(\alpha_{1}^{**} \) are both best responses to \(\alpha_{2}^{*} \), so is \((1 - t)\alpha_{1}^{*} + t\alpha_{1}^{**} \);

 * since \(\alpha_{2}^{*} \) is a best response to both \(\alpha_{1}^{*} \) and \(\alpha_{1}^{**} \), it is a best response to

 \[(1 - t)\alpha_{1}^{*} + t\alpha_{1}^{**} \].

 - There is some \(t \) such that all components of \((1 - t)\alpha_{1}^{*} + t\alpha_{1}^{**} \) are nonnegative and at least one is zero, giving a Nash equilibrium that is not totally mixed, which we know is impossible.