Economics 3012
Strategic Behavior
Andy McLennan
August 11, 2006

Lecture 3

Topics

• Problem Set 2
• Hotelling’s Model Of Competitive Elections
• The War of Attrition
• Accident Law
• Introduction to Auction Theory
Problem Set 2

Exercise 49.1

Problem Description:

- Each voter votes for A, B, or C. A tie between two candidates is regarded as worse than the better one winning and better than the worse one winning.
 - Show that voting for one’s least favorite candidate is the only weakly dominated vote.
 - Find a Nash equilibrium in which some voter votes for her second favorite candidate.
Analysis:

- Voting for the least favorite candidate is weakly dominated.
 - Specifically, if a voter switches from her least favorite to her favorite, that can only increase the chance that her favorite candidate wins and diminish the chance that her least favorite wins.

- Voting for one’s favorite candidate may easily be the unique best response.
 - It may result in that candidate’s election, so this strategy cannot be weakly dominated.

- Voting for one’s second favorite candidate cannot be weakly dominated.
 - This is illustrated in the example below.
• Example:
 – There are five voters.
 * Voters 1 and 2 prefer A to B and B to C.
 * Voter 3 prefers B to A and A to C.
 * Voters 4 and 5 prefer C to B and B to A.
 – Voters 1, 2, and 3 vote for A and Voters 4 and 5 vote for C.
 – Voting for A is the unique best response for Voter 3, even though B is her favorite candidate.
 – This is a Nash equilibrium.
 * If any of the first three voters switch to a different vote, the outcome changes to either C or a tie between A and C, which is worse than A for each of them.
 * Voters 4 and 5 cannot change the outcome.
Exercise 61.1

Problem Description:

• Each firm \(i = 1, \ldots, n \) chooses \(q_i \).

• Price is \(P(Q) = \alpha - Q \) where
 \[Q = q_1 + \cdots + q_n. \]

• Firm \(i \)'s profit is
 \[\pi_i(q_1, \ldots , q_n) = q_i(P(Q) - c). \]

Analysis

• If \(\alpha - \sum_{j \neq i} q_j < c \), then the unique best response is \(q_i = 0 \).

• If \(\alpha - \sum_{j \neq i} q_j \geq c \), then setting the partial derivative of \(\pi_i \) with respect to \(q_i \) equal to zero shows that the unique best response is
 \[q_i^*(Q) = \frac{1}{2} \left(\alpha - \sum_{j \neq i} q_j - c \right). \]
• \(\alpha - \sum_{j \neq i} q_j < c \) is impossible because each \(i \) would do better setting \(q_i = 0 \).

• No agent will set \(q_i = 0 \).
 - This would only happen if
 \[\alpha - \sum_{j \neq i} q_j = c. \]
 - But then for any \(h \) with \(q_h > 0 \) we have
 \[\alpha - \sum_{j \neq h} q_j > c \]
 and
 \[
 \sum_{j \neq i} q_j = \sum_i q_i = q_h + \sum_{j \neq h} q_j
 < (\alpha - \sum_{j \neq h} q_j - c) + \sum_{j \neq h} q_j = \alpha - c.
 \]

• For any two \(i \) and \(h \) we have \(q_i = q_h \) because
 \[
 q_i - q_h = \frac{1}{2} (\alpha - \sum_{j \neq i} q_j - c) - \frac{1}{2} (\alpha - \sum_{j \neq h} q_j - c)
 = \frac{1}{2} (q_i - q_h).
 \]
 Thus all firms produce a common quantity \(q \).
• Therefore we have

\[q = \frac{1}{2}(\alpha - (n - 1)q - c), \]

so \(q = (\alpha - c)/(n + 1). \)

• The resulting price is

\[\alpha - n(\alpha - c)/(n + 1) = \frac{1}{n+1}\alpha + \frac{n}{n+1}c \]

which clearly approaches \(c \) as \(n \to \infty \).
Downsian Elections

Hotelling’s model was popularized in political science by a 1957 book *An Economic Theory of Democracy* by Downs. In the Downsian application of Hotelling’s model it is more natural to assume that the goal is to capture the largest number of voters.

Problem Description:

- Two political parties $i = 1, 2$ each choose policy positions x_i with $0 \leq x_i \leq 1$.
- Voters have *single peaked preferences*: each has a “bliss point,” and in each direction likes policy positions less as they go further from this.
- To simplify the mathematical description we assume that departures from the bliss point in the two directions are symmetric, so the voter votes for the party whose position is closer.
 - This assumption is unnecessary.
• We also assume that voters’ bliss points are uniformly distributed across locations between 0 and 1.

– This assumption is also unnecessary.

• Each political party wins if it gets a majority of votes. Let

\[v_i(x_1, x_2) = \begin{cases}
\frac{1}{2}(x_i + x_j), & x_i < x_j, \\
1/2, & x_i = x_j, \\
1 - \frac{1}{2}(x_i + x_j), & x_i > x_j.
\end{cases} \]

Then

\[\pi_i(x_1, x_2) = \begin{cases}
1, & v_i(x_1, x_2) > v_j(x_1, x_2), \\
1/2, & v_i(x_1, x_2) = v_j(x_1, x_2), \\
0, & v_i(x_1, x_2) > v_j(x_1, x_2).
\end{cases} \]
Analysis:

- The best response correspondence for agent i is

$$B_i(x_j) = \begin{cases} (x_j, 1 - x_j), & x_j < 1/2, \\ \{1/2\}, & x_j = 1/2, \\ (1 - x_j, x_j), & x_j > 1/2. \end{cases}$$

- The only Nash equilibrium is

$$(x_1, x_2) = (1/2, 1/2).$$
Exercise 74.2

Problem Description:

The winner of the bigger state will have a majority in the electoral college and win the election.

Analysis

- If the other candidate is not choosing m_1, you can win all the electoral votes of State 1, and the election, by choosing a position closer to m_1.

- Therefore all Nash equilibria have at least one agent choosing m_1.

- If the other agent is choosing m_1 your unique best response is also to choose m_1.

- Thus (m_1, m_1) is a Nash equilibrium, and there is no other.
Multidimensional Issue Spaces

• The single dimensional Downsian model suggests that politics will be stable, with a centrist tendency.

• But it may happen that there is more than one dimension of policy that voters care about. For example:
 – Progressivity of taxation.
 – Treatment of minorities.

• In the multidimensional case the Downsian model seems highly unstable: there is typically no equilibrium.
Problem (not from Osborne) Description:

- There are three voters $v = 1, 2, 3$:
 - Each voter v has a bliss point $b_v \in \mathbb{R}^2$.
 - For any two policy positions $p_1, p_2 \in \mathbb{R}^2$, voter v prefers whichever is closer to b_v.
 * The voter’s indifference curves are circles centered at b_v.
 - Assume b_1, b_2, and b_3 are not colinear. (‘Colinear’ means “contained in a single line.”)

- Two political parties choose policy positions $p_1, p_2 \in \mathbb{R}^2$.

- A party wins if a majority of the voters prefer its position.
Analysis:

- Assuming that $p_1 \neq p_2$, let L be the line that
 - is perpendicular to the line segment between p_1 and p_2;
 - contains the midpoint of the line segment between p_1 and p_2.

- Then L divides the voters who vote for party 1 from those who vote for party 2.

- For a given p_1 and any line ℓ that does not contain p_1, one can choose p_2 to make $L = \ell$.

- Since b_1, b_2, and b_3 are not colinear, p_1 is not in the line ℓ^* containing some pair of bliss points, say b_1 and b_2.

- The second party can win by choosing p_2 to make L a line parallel to ℓ^* with p_1 on one side and b_1 and b_2 on the other.
 - Thus there is no Nash equilibrium.
The War of Attrition

Problem Description:

- Two contestants are disputing some item of value.
- The one who concedes first loses. Ties are decided by coin flip.
- Waiting time is costly for both, and both incur the cost up to the time of concession.

Let v_1 and v_2 be the values of the object to the two players, and let t_1 and t_2 be the concession times.

- Agent i’s payoff is

\[
 u_i(t_1, t_2) = \begin{cases}
-t_i, & t_i < t_j, \\
\frac{1}{2}v_i - t_i, & t_i = t_j, \\
v_i - t_j, & t_i > t_j.
\end{cases}
\]
Analysis:

• Agent i’s best response correspondence is

$$B_i(t_j) = \begin{cases}
\{ t_i : t_i > t_j \}, & t_j < v_i, \\
\{0\} \cup \{ t_i : t_i > t_j \}, & t_j = v_i, \\
\{0\}, & t_j > v_i.
\end{cases}$$

• There cannot be a Nash equilibrium (t_1, t_2) with $t_1, t_2 > 0$.

• Therefore the set of Nash equilibria is

$$\{ (0, t_2) : t_2 \geq v_1 \} \cup \{ (t_1, 0) : t_1 \geq v_2 \}.$$

• Note that:
 – There is never a fight in equilibrium.
 – Agent i can win even if $v_i < v_j$.
 – The only equilibria are asymmetric.

• If you expect to play a War of Attrition later, how might you prepare for this?

• If Wars of Attrition are frequent, a reputation for stubbornness can be advantageous.
Variant: Waiting Reduces Values

Problem Description:

- The object has initial values v_1 and v_2.
- Each player $i = 1, 2$ chooses $t_i \geq 0$.
- Agent i’s payoff is

$$
u_i(t_1, t_2) = \begin{cases}
0, & t_i < t_j, \\
\frac{1}{2}(v_i - t_i), & t_i = t_j < v_i, \\
0, & t_i = t_j \geq v_i, \\
v_i - t_j, & t_i > t_j < v_i, \\
0, & t_i > t_j \geq v_i.
\end{cases}
$$

Analysis:

- Let (t_1, t_2) be a Nash equilibrium.
 - Both $t_1 < v_2$ and $t_2 < v_1$ is impossible.
 - If $t_i \geq v_j$, then for any t_j, (t_1, t_2) is a Nash equilibrium.

- Therefore the set of Nash equilibria is

$$\{(t_1, t_2) : t_1 \geq v_2 \text{ or } t_2 \geq v_1 \}.$$
Accident Law

A rule of law defines the rules of a game.

• How will the game be played?
• Which rules lead to efficient (or at least better) outcomes?
• This is the spirit of mechanism design.
 – There is some inability of governing institutions to directly dictate desired outcomes.
 ∗ This may arise due to inadequate tools of enforcement or private information.
 – One hopes to design a system that (in the case of privately held information) work reasonably well in a broad range of possibilities.
Problem Description:

- Agent 1 (the *injurer*) and agent 2 (the *victim*) choose levels of care a_1 and a_2 that are nonnegative real numbers.

- The loss (on average) resulting from these choices is $L(a_1, a_2)$. Assume that the function L is:
 - positive for all (a_1, a_2);
 - decreasing in each variable:
 $$L(a_1, a_2) > L(a'_1, a_2) \text{ and } L(a_1, a_2) > L(a_1, a'_2) \text{ whenever } a'_1 > a_1 \text{ and } a'_2 > a_2.$$

- A rule of law is a function $\rho(a_1, a_2) \in [0, 1]$ assigning a share of the loss to the injurer.
 - This results in a game in which the choice variables are the two levels of care and the payoff functions are:
 $$u_1(a_1, a_2) = -a_1 - \rho(a_1, a_2)L(a_1, a_2);$$
 $$u_1(a_1, a_2) = -a_2 - (1-\rho(a_1, a_2))L(a_1, a_2).$$
• Negligence with contributory negligence: there are mandated levels of care \(X_1 \) and \(X_2 \) for the two agents such that:

\[
\rho(a_1, a_2) = \begin{cases}
1, & a_1 < X_1 \text{ and } a_2 \geq X_2, \\
0, & \text{otherwise.}
\end{cases}
\]

• Special cases:
 - Pure negligence: \(X_1 > 0 \) and \(X_2 = 0 \).
 - Strict liability: \(X_1 = \infty \) and \(X_2 = 0 \).
 - Efficient rule: \((X_1, X_2) = (\hat{a}_1, \hat{a}_2) \) where \((\hat{a}_1, \hat{a}_2) \) maximizes the total loss: for all \(a_1, a_2 \)

\[
-\hat{a}_1 - \hat{a}_2 - L(\hat{a}_1, \hat{a}_2) \geq -a_1 - a_2 - L(a_1, a_2).
\]
Analysis

- If \((X_1, X_2) = (\hat{a}_1, \hat{a}_2)\), then \((\hat{a}_1, \hat{a}_2)\) is a Nash equilibrium.
 - The injurer gains nothing by increasing the level of care, and for any \(a_1 < \hat{a}_1\) we have

 \[-a_1 - L(a_1, \hat{a}_2) < -\hat{a}_1 - L(\hat{a}_1, \hat{a}_2) \leq \hat{a}_1.\]
 - The victim’s payoff \(-a_2 - L(\hat{a}_1, a_2)\) is maximized by setting \(a_2 = \hat{a}_2\).
• (\hat{a}_1, \hat{a}_2) is the unique Nash equilibrium.

 – Let (a_1, a_2) be a Nash equilibrium.

 – The injurer’s best response correspondence satisfies:

$B_1(a_2) = \begin{cases}
\emptyset, & a_2 < \hat{a}_2, \\
\{\hat{a}_1\}, & a_2 = \hat{a}_2, \\
\subset [0, \hat{a}_1], & a_2 > \hat{a}_2.
\end{cases}$

– If $a_1 = 0$, the victim does better choosing $a_2 = \hat{a}_2$ than any $a_2 < \hat{a}_2$ because

$$-\hat{a}_2 \geq -\hat{a}_1 - \hat{a}_2 - L(\hat{a}_1, \hat{a}_2)$$

$$> -0 - a_2 - L(0, a_2).$$

* Therefore $a_2 \geq \hat{a}_2$ and $a_1 \leq \hat{a}_1$.

– If $a_1 < \hat{a}_1$, then for the victim \hat{a}_2 is better than any $a_2 > \hat{a}_2$ because the respective payoffs are $-\hat{a}_2$ and $-a_2$.

* Therefore $a_2 = \hat{a}_2$, and a_1 must be \hat{a}_1.
Introduction to Auctions

Auctions are very old.

Auctions are increasingly important.

- Government procurement.
- Privatization, including spectrum.
- Internet auctions.
- Fish, flowers, wine, art, etc.

Types of auctions:

- First price.
 - First price sealed bid.
 - Dutch.

- Second price.
 - Second price sealed bid.
 - English or open outcry.
Second Price Sealed Bid Auctions

Problem Description:

• Each player $i = 1, \ldots, n$ has a value v_i.
• Each player submits a bid b_i.
• The object is awarded to the player submitting the highest bid, who pays the second highest bid:

$$u_i(b_1, \ldots, b_n) = v_i - \max\{ b_j : j \neq i \}$$

if $b_i = \max_j b_j$, and $u_i(b_1, \ldots, b_n) = 0$ otherwise. (Assume the winner is chosen by equiprobable lottery when there is a tie.)
Analysis:

- Bidding your value is a weakly dominant strategy:
 - Your bid affects only whether you win, and not how much you pay when you win.
 - $b_i < v_i$ rather than $b_i = v_i$ risks losing when winning would be profitable.
 - $b_i > v_i$ rather than $b_i = v_i$ risks paying too much.

- There are many equilibria.
First Price Sealed Bid Auctions

Problem Description:

- Each player $i = 1, \ldots, n$ has a value v_i.
- Each player submits a bid b_i.
- The object is awarded to the player submitting the highest bid, and that person pays their bid:

$$u_i(b_1, \ldots, b_n) = v_i - b_i$$

if $b_i = \max_j b_j$, and $u_i(b_1, \ldots, b_n) = 0$ otherwise. (Assume the winner is chosen by equiprobable lottery when there is a tie.)

Analysis: if the values $v_1 > \cdots > v_n$ are known by everyone, in any Nash equilibrium $b_1 = v_2$ and bidder one wins the object with probability one.
Multiunit Auctions

Case I: Identical objects: suppose the n bidders are competing for m identical objects. Each bidder submits a list $b_i = (b^1_i, \ldots, b^k_i)$ with $b^1_i \geq \cdots \geq b^k_i$. The objects are awarded to the m largest bids.

- There are several payment rules that can be used:
 - Discriminatory: each winning bid pays the amount bid.
 - Uniform price: all winning bids pay the highest rejected bid.
 - Vickrey: A bidder winning k objects pays the sum of the k highest bids submitted by other bidders.
Two Object Case

Problem Description:

- There are two identical objects being sold.
- For each player the value of two objects is less than twice the value of a single object.
- Each player $i = 1, \ldots, n$ submits bids $v_i > w_i > 0$.
- For which of the payment rules above is “truth telling” (bidding your actual valuations) a weakly dominant strategy?

Analysis:

- In the Vickrey auction your bid affects whether you win but not how much you pay when you win.
 - Truth telling is the only rule that insures that you win if and only if it is advantageous.
- Examples show that the other two rules do not have this property.
Case II: Nonidentical Objects and Positive Complementarities

- Leaving incentives aside, hard problems abound:
 - Suppose each \(i = 1, \ldots, n \) has a value \(v_{ik} \) for each object \(k = 1, \ldots, m \).
 * How hard is it (in a computational sense) to find an allocation of at most one object to each bidder that maximizes the sum of values?
 - When bidders’ values of packages of objects may differ from the sum of values of individual objects, the value maximization problem is computationally intractable.

- Spectrum Auctions in the US
 - Simultaneous ascending bid.
 * The intent was to encourage information flows.
 - It was vulnerable to implicit collusion.
 - Results in practice were variable.
Chopstick Auction

Problem (not in Osborne) Description:

• Each $i = 1, 2$ submits bids (b^1_i, b^2_i, b^3_i) on three identical objects.

• Each object is sold to the high bidder, with the bidder paying her bid.
 – In the event of a tie, the winner is decided by coin flip.

• Each agent losses the money spent on winning bids and wins 1 if she wins two or more objects.

• That is, one chopstick is worth nothing, and the value of three chopsticks is the same as the value of two.
Analysis:

- There is no Nash equilibrium.
 - Say that player i’s strategy is vulnerable if $b_i^k + b_i^\ell < 1$ for some distinct $k, \ell = 1, 2, 3$.
 - In any Nash equilibrium one player’s strategy must be invulnerable, and the other player must win no objects.
 - If, in equilibrium, player i is playing the invulnerable strategy (b_i^1, b_i^2, b_i^3), then player i wins all three objects, paying
 \[
 b_i^1 + b_i^2 + b_i^3 = \frac{1}{2}(b_i^1 + b_i^2) + \frac{1}{2}(b_i^1 + b_i^3) + \frac{1}{2}(b_i^2 + b_i^3) \geq \frac{3}{2}
 \]
 and could do better by bidding $(0, 0, 0)$.
- A remarkable, and remarkably difficult, paper by Rosenthal and Szentes gives an equilibrium in mixed strategies.